1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 | 1 1 1 1 1 1 1 1 44 44 41 3 1 1 1 1 1 1 1 1 1 | /*! geolib 2.0.21 by Manuel Bieh * Library to provide geo functions like distance calculation, * conversion of decimal coordinates to sexagesimal and vice versa, etc. * WGS 84 (World Geodetic System 1984) * * @author Manuel Bieh * @url http://www.manuelbieh.com/ * @version 2.0.21 * @license MIT **/;(function(global, undefined) { "use strict"; function Geolib() {} // Constants Geolib.TO_RAD = Math.PI / 180; Geolib.TO_DEG = 180 / Math.PI; Geolib.PI_X2 = Math.PI * 2; Geolib.PI_DIV4 = Math.PI / 4; // Setting readonly defaults var geolib = Object.create(Geolib.prototype, { version: { value: "2.0.21" }, radius: { value: 6378137 }, minLat: { value: -90 }, maxLat: { value: 90 }, minLon: { value: -180 }, maxLon: { value: 180 }, sexagesimalPattern: { value: /^([0-9]{1,3})°\s*([0-9]{1,3}(?:\.(?:[0-9]{1,2}))?)'\s*(([0-9]{1,3}(\.([0-9]{1,4}))?)"\s*)?([NEOSW]?)$/ }, measures: { value: Object.create(Object.prototype, { "m" : {value: 1}, "km": {value: 0.001}, "cm": {value: 100}, "mm": {value: 1000}, "mi": {value: (1 / 1609.344)}, "sm": {value: (1 / 1852.216)}, "ft": {value: (100 / 30.48)}, "in": {value: (100 / 2.54)}, "yd": {value: (1 / 0.9144)} }) }, prototype: { value: Geolib.prototype }, extend: { value: function(methods, overwrite) { for(var prop in methods) { Eif(typeof geolib.prototype[prop] === 'undefined' || overwrite === true) { if(typeof methods[prop] === 'function' && typeof methods[prop].bind === 'function') { geolib.prototype[prop] = methods[prop].bind(geolib); } else { geolib.prototype[prop] = methods[prop]; } } } } } }); Eif (typeof(Number.prototype.toRad) === 'undefined') { Number.prototype.toRad = function() { return this * Geolib.TO_RAD; }; } Eif (typeof(Number.prototype.toDeg) === 'undefined') { Number.prototype.toDeg = function() { return this * Geolib.TO_DEG; }; } // Here comes the magic geolib.extend({ decimal: {}, sexagesimal: {}, distance: null, getKeys: function(point) { // GeoJSON Array [longitude, latitude(, elevation)] if(Object.prototype.toString.call(point) == '[object Array]') { return { longitude: point.length >= 1 ? 0 : undefined, latitude: point.length >= 2 ? 1 : undefined, elevation: point.length >= 3 ? 2 : undefined }; } var getKey = function(possibleValues) { var key; possibleValues.every(function(val) { // TODO: check if point is an object if(typeof point != 'object') { return true; } return point.hasOwnProperty(val) ? (function() { key = val; return false; }()) : true; }); return key; }; var longitude = getKey(['lng', 'lon', 'longitude']); var latitude = getKey(['lat', 'latitude']); var elevation = getKey(['alt', 'altitude', 'elevation', 'elev']); // return undefined if not at least one valid property was found if(typeof latitude == 'undefined' && typeof longitude == 'undefined' && typeof elevation == 'undefined') { return undefined; } return { latitude: latitude, longitude: longitude, elevation: elevation }; }, // returns latitude of a given point, converted to decimal // set raw to true to avoid conversion getLat: function(point, raw) { return raw === true ? point[this.getKeys(point).latitude] : this.useDecimal(point[this.getKeys(point).latitude]); }, // Alias for getLat latitude: function(point) { return this.getLat.call(this, point); }, // returns longitude of a given point, converted to decimal // set raw to true to avoid conversion getLon: function(point, raw) { return raw === true ? point[this.getKeys(point).longitude] : this.useDecimal(point[this.getKeys(point).longitude]); }, // Alias for getLon longitude: function(point) { return this.getLon.call(this, point); }, getElev: function(point) { return point[this.getKeys(point).elevation]; }, // Alias for getElev elevation: function(point) { return this.getElev.call(this, point); }, coords: function(point, raw) { var retval = { latitude: raw === true ? point[this.getKeys(point).latitude] : this.useDecimal(point[this.getKeys(point).latitude]), longitude: raw === true ? point[this.getKeys(point).longitude] : this.useDecimal(point[this.getKeys(point).longitude]) }; var elev = point[this.getKeys(point).elevation]; if(typeof elev !== 'undefined') { retval['elevation'] = elev; } return retval; }, // Alias for coords ll: function(point, raw) { return this.coords.call(this, point, raw); }, // checks if a variable contains a valid latlong object validate: function(point) { var keys = this.getKeys(point); if(typeof keys === 'undefined' || typeof keys.latitude === 'undefined' || keys.longitude === 'undefined') { return false; } var lat = point[keys.latitude]; var lng = point[keys.longitude]; if(typeof lat === 'undefined' || !this.isDecimal(lat) && !this.isSexagesimal(lat)) { return false; } if(typeof lng === 'undefined' || !this.isDecimal(lng) && !this.isSexagesimal(lng)) { return false; } lat = this.useDecimal(lat); lng = this.useDecimal(lng); if(lat < this.minLat || lat > this.maxLat || lng < this.minLon || lng > this.maxLon) { return false; } return true; }, /** * Calculates geodetic distance between two points specified by latitude/longitude using * Vincenty inverse formula for ellipsoids * Vincenty Inverse Solution of Geodesics on the Ellipsoid (c) Chris Veness 2002-2010 * (Licensed under CC BY 3.0) * * @param object Start position {latitude: 123, longitude: 123} * @param object End position {latitude: 123, longitude: 123} * @param integer Accuracy (in meters) * @param integer Precision (in decimal cases) * @return integer Distance (in meters) */ getDistance: function(start, end, accuracy, precision) { accuracy = Math.floor(accuracy) || 1; precision = Math.floor(precision) || 0; var s = this.coords(start); var e = this.coords(end); var a = 6378137, b = 6356752.314245, f = 1/298.257223563; // WGS-84 ellipsoid params var L = (e['longitude']-s['longitude']).toRad(); var cosSigma, sigma, sinAlpha, cosSqAlpha, cos2SigmaM, sinSigma; var U1 = Math.atan((1-f) * Math.tan(parseFloat(s['latitude']).toRad())); var U2 = Math.atan((1-f) * Math.tan(parseFloat(e['latitude']).toRad())); var sinU1 = Math.sin(U1), cosU1 = Math.cos(U1); var sinU2 = Math.sin(U2), cosU2 = Math.cos(U2); var lambda = L, lambdaP, iterLimit = 100; do { var sinLambda = Math.sin(lambda), cosLambda = Math.cos(lambda); sinSigma = ( Math.sqrt( ( cosU2 * sinLambda ) * ( cosU2 * sinLambda ) + ( cosU1 * sinU2 - sinU1 * cosU2 * cosLambda ) * ( cosU1 * sinU2 - sinU1 * cosU2 * cosLambda ) ) ); if (sinSigma === 0) { return geolib.distance = 0; // co-incident points } cosSigma = sinU1 * sinU2 + cosU1 * cosU2 * cosLambda; sigma = Math.atan2(sinSigma, cosSigma); sinAlpha = cosU1 * cosU2 * sinLambda / sinSigma; cosSqAlpha = 1 - sinAlpha * sinAlpha; cos2SigmaM = cosSigma - 2 * sinU1 * sinU2 / cosSqAlpha; if (isNaN(cos2SigmaM)) { cos2SigmaM = 0; // equatorial line: cosSqAlpha=0 (§6) } var C = ( f / 16 * cosSqAlpha * ( 4 + f * ( 4 - 3 * cosSqAlpha ) ) ); lambdaP = lambda; lambda = ( L + ( 1 - C ) * f * sinAlpha * ( sigma + C * sinSigma * ( cos2SigmaM + C * cosSigma * ( -1 + 2 * cos2SigmaM * cos2SigmaM ) ) ) ); } while (Math.abs(lambda-lambdaP) > 1e-12 && --iterLimit>0); if (iterLimit === 0) { return NaN; // formula failed to converge } var uSq = ( cosSqAlpha * ( a * a - b * b ) / ( b*b ) ); var A = ( 1 + uSq / 16384 * ( 4096 + uSq * ( -768 + uSq * ( 320 - 175 * uSq ) ) ) ); var B = ( uSq / 1024 * ( 256 + uSq * ( -128 + uSq * ( 74-47 * uSq ) ) ) ); var deltaSigma = ( B * sinSigma * ( cos2SigmaM + B / 4 * ( cosSigma * ( -1 + 2 * cos2SigmaM * cos2SigmaM ) -B / 6 * cos2SigmaM * ( -3 + 4 * sinSigma * sinSigma ) * ( -3 + 4 * cos2SigmaM * cos2SigmaM ) ) ) ); var distance = b * A * (sigma - deltaSigma); distance = distance.toFixed(precision); // round to 1mm precision //if (start.hasOwnProperty(elevation) && end.hasOwnProperty(elevation)) { if (typeof this.elevation(start) !== 'undefined' && typeof this.elevation(end) !== 'undefined') { var climb = Math.abs(this.elevation(start) - this.elevation(end)); distance = Math.sqrt(distance * distance + climb * climb); } return this.distance = Math.round(distance * Math.pow(10, precision) / accuracy) * accuracy / Math.pow(10, precision); /* // note: to return initial/final bearings in addition to distance, use something like: var fwdAz = Math.atan2(cosU2*sinLambda, cosU1*sinU2-sinU1*cosU2*cosLambda); var revAz = Math.atan2(cosU1*sinLambda, -sinU1*cosU2+cosU1*sinU2*cosLambda); return { distance: s, initialBearing: fwdAz.toDeg(), finalBearing: revAz.toDeg() }; */ }, /** * Calculates the distance between two spots. * This method is more simple but also far more inaccurate * * @param object Start position {latitude: 123, longitude: 123} * @param object End position {latitude: 123, longitude: 123} * @param integer Accuracy (in meters) * @return integer Distance (in meters) */ getDistanceSimple: function(start, end, accuracy) { accuracy = Math.floor(accuracy) || 1; var distance = Math.round( Math.acos( Math.sin( this.latitude(end).toRad() ) * Math.sin( this.latitude(start).toRad() ) + Math.cos( this.latitude(end).toRad() ) * Math.cos( this.latitude(start).toRad() ) * Math.cos( this.longitude(start).toRad() - this.longitude(end).toRad() ) ) * this.radius ); return geolib.distance = Math.floor(Math.round(distance/accuracy)*accuracy); }, /** * Calculates the center of a collection of geo coordinates * * @param array Collection of coords [{latitude: 51.510, longitude: 7.1321}, {latitude: 49.1238, longitude: "8° 30' W"}, ...] * @return object {latitude: centerLat, longitude: centerLng} */ getCenter: function(coords) { var coordsArray = coords; if(typeof coords === 'object' && !(coords instanceof Array)) { coordsArray = []; for(var key in coords) { coordsArray.push( this.coords(coords[key]) ); } } if(!coordsArray.length) { return false; } var X = 0.0; var Y = 0.0; var Z = 0.0; var lat, lon, hyp; coordsArray.forEach(function(coord) { lat = this.latitude(coord).toRad(); lon = this.longitude(coord).toRad(); X += Math.cos(lat) * Math.cos(lon); Y += Math.cos(lat) * Math.sin(lon); Z += Math.sin(lat); }, this); var nb_coords = coordsArray.length; X = X / nb_coords; Y = Y / nb_coords; Z = Z / nb_coords; lon = Math.atan2(Y, X); hyp = Math.sqrt(X * X + Y * Y); lat = Math.atan2(Z, hyp); return { latitude: (lat * Geolib.TO_DEG).toFixed(6), longitude: (lon * Geolib.TO_DEG).toFixed(6) }; }, /** * Gets the max and min, latitude, longitude, and elevation (if provided). * @param array array with coords e.g. [{latitude: 51.5143, longitude: 7.4138}, {latitude: 123, longitude: 123}, ...] * @return object {maxLat: maxLat, * minLat: minLat * maxLng: maxLng, * minLng: minLng, * maxElev: maxElev, * minElev: minElev} */ getBounds: function(coords) { if (!coords.length) { return false; } var useElevation = this.elevation(coords[0]); var stats = { maxLat: -Infinity, minLat: Infinity, maxLng: -Infinity, minLng: Infinity }; if (typeof useElevation != 'undefined') { stats.maxElev = 0; stats.minElev = Infinity; } for (var i = 0, l = coords.length; i < l; ++i) { stats.maxLat = Math.max(this.latitude(coords[i]), stats.maxLat); stats.minLat = Math.min(this.latitude(coords[i]), stats.minLat); stats.maxLng = Math.max(this.longitude(coords[i]), stats.maxLng); stats.minLng = Math.min(this.longitude(coords[i]), stats.minLng); if (useElevation) { stats.maxElev = Math.max(this.elevation(coords[i]), stats.maxElev); stats.minElev = Math.min(this.elevation(coords[i]), stats.minElev); } } return stats; }, /** * Calculates the center of the bounds of geo coordinates. * * On polygons like political borders (eg. states) * this may gives a closer result to human expectation, than `getCenter`, * because that function can be disturbed by uneven distribution of * point in different sides. * Imagine the US state Oklahoma: `getCenter` on that gives a southern * point, because the southern border contains a lot more nodes, * than the others. * * @param array Collection of coords [{latitude: 51.510, longitude: 7.1321}, {latitude: 49.1238, longitude: "8° 30' W"}, ...] * @return object {latitude: centerLat, longitude: centerLng} */ getCenterOfBounds: function(coords) { var b = this.getBounds(coords); var latitude = b.minLat + ((b.maxLat - b.minLat) / 2); var longitude = b.minLng + ((b.maxLng - b.minLng) / 2); return { latitude: parseFloat(latitude.toFixed(6)), longitude: parseFloat(longitude.toFixed(6)) }; }, /** * Computes the bounding coordinates of all points on the surface * of the earth less than or equal to the specified great circle * distance. * * @param object Point position {latitude: 123, longitude: 123} * @param number Distance (in meters). * @return array Collection of two points defining the SW and NE corners. */ getBoundsOfDistance: function(point, distance) { var latitude = this.latitude(point); var longitude = this.longitude(point); var radLat = latitude.toRad(); var radLon = longitude.toRad(); var radDist = distance / this.radius; var minLat = radLat - radDist; var maxLat = radLat + radDist; var MAX_LAT_RAD = this.maxLat.toRad(); var MIN_LAT_RAD = this.minLat.toRad(); var MAX_LON_RAD = this.maxLon.toRad(); var MIN_LON_RAD = this.minLon.toRad(); var minLon; var maxLon; if (minLat > MIN_LAT_RAD && maxLat < MAX_LAT_RAD) { var deltaLon = Math.asin(Math.sin(radDist) / Math.cos(radLat)); minLon = radLon - deltaLon; if (minLon < MIN_LON_RAD) { minLon += Geolib.PI_X2; } maxLon = radLon + deltaLon; if (maxLon > MAX_LON_RAD) { maxLon -= Geolib.PI_X2; } } else { // A pole is within the distance. minLat = Math.max(minLat, MIN_LAT_RAD); maxLat = Math.min(maxLat, MAX_LAT_RAD); minLon = MIN_LON_RAD; maxLon = MAX_LON_RAD; } return [ // Southwest { latitude: minLat.toDeg(), longitude: minLon.toDeg() }, // Northeast { latitude: maxLat.toDeg(), longitude: maxLon.toDeg() } ]; }, /** * Checks whether a point is inside of a polygon or not. * Note that the polygon coords must be in correct order! * * @param object coordinate to check e.g. {latitude: 51.5023, longitude: 7.3815} * @param array array with coords e.g. [{latitude: 51.5143, longitude: 7.4138}, {latitude: 123, longitude: 123}, ...] * @return bool true if the coordinate is inside the given polygon */ isPointInside: function(latlng, coords) { for(var c = false, i = -1, l = coords.length, j = l - 1; ++i < l; j = i) { if( ( (this.longitude(coords[i]) <= this.longitude(latlng) && this.longitude(latlng) < this.longitude(coords[j])) || (this.longitude(coords[j]) <= this.longitude(latlng) && this.longitude(latlng) < this.longitude(coords[i])) ) && ( this.latitude(latlng) < (this.latitude(coords[j]) - this.latitude(coords[i])) * (this.longitude(latlng) - this.longitude(coords[i])) / (this.longitude(coords[j]) - this.longitude(coords[i])) + this.latitude(coords[i]) ) ) { c = !c; } } return c; }, /** * Pre calculate the polygon coords, to speed up the point inside check. * Use this function before calling isPointInsideWithPreparedPolygon() * @see Algorythm from http://alienryderflex.com/polygon/ * @param array array with coords e.g. [{latitude: 51.5143, longitude: 7.4138}, {latitude: 123, longitude: 123}, ...] */ preparePolygonForIsPointInsideOptimized: function(coords) { for(var i = 0, j = coords.length-1; i < coords.length; i++) { if(this.longitude(coords[j]) === this.longitude(coords[i])) { coords[i].constant = this.latitude(coords[i]); coords[i].multiple = 0; } else { coords[i].constant = this.latitude(coords[i]) - ( this.longitude(coords[i]) * this.latitude(coords[j]) ) / ( this.longitude(coords[j]) - this.longitude(coords[i]) ) + ( this.longitude(coords[i])*this.latitude(coords[i]) ) / ( this.longitude(coords[j])-this.longitude(coords[i]) ); coords[i].multiple = ( this.latitude(coords[j])-this.latitude(coords[i]) ) / ( this.longitude(coords[j])-this.longitude(coords[i]) ); } j=i; } }, /** * Checks whether a point is inside of a polygon or not. * "This is useful if you have many points that need to be tested against the same (static) polygon." * Please call the function preparePolygonForIsPointInsideOptimized() with the same coords object before using this function. * Note that the polygon coords must be in correct order! * * @see Algorythm from http://alienryderflex.com/polygon/ * * @param object coordinate to check e.g. {latitude: 51.5023, longitude: 7.3815} * @param array array with coords e.g. [{latitude: 51.5143, longitude: 7.4138}, {latitude: 123, longitude: 123}, ...] * @return bool true if the coordinate is inside the given polygon */ isPointInsideWithPreparedPolygon: function(point, coords) { var flgPointInside = false, y = this.longitude(point), x = this.latitude(point); for(var i = 0, j = coords.length-1; i < coords.length; i++) { if ((this.longitude(coords[i]) < y && this.longitude(coords[j]) >=y || this.longitude(coords[j]) < y && this.longitude(coords[i]) >= y)) { flgPointInside^=(y*coords[i].multiple+coords[i].constant < x); } j=i; } return flgPointInside; }, /** * Shortcut for geolib.isPointInside() */ isInside: function() { return this.isPointInside.apply(this, arguments); }, /** * Checks whether a point is inside of a circle or not. * * @param object coordinate to check (e.g. {latitude: 51.5023, longitude: 7.3815}) * @param object coordinate of the circle's center (e.g. {latitude: 51.4812, longitude: 7.4025}) * @param integer maximum radius in meters * @return bool true if the coordinate is within the given radius */ isPointInCircle: function(latlng, center, radius) { return this.getDistance(latlng, center) < radius; }, /** * Shortcut for geolib.isPointInCircle() */ withinRadius: function() { return this.isPointInCircle.apply(this, arguments); }, /** * Gets rhumb line bearing of two points. Find out about the difference between rhumb line and * great circle bearing on Wikipedia. It's quite complicated. Rhumb line should be fine in most cases: * * http://en.wikipedia.org/wiki/Rhumb_line#General_and_mathematical_description * * Function heavily based on Doug Vanderweide's great PHP version (licensed under GPL 3.0) * http://www.dougv.com/2009/07/13/calculating-the-bearing-and-compass-rose-direction-between-two-latitude-longitude-coordinates-in-php/ * * @param object origin coordinate (e.g. {latitude: 51.5023, longitude: 7.3815}) * @param object destination coordinate * @return integer calculated bearing */ getRhumbLineBearing: function(originLL, destLL) { // difference of longitude coords var diffLon = this.longitude(destLL).toRad() - this.longitude(originLL).toRad(); // difference latitude coords phi var diffPhi = Math.log( Math.tan( this.latitude(destLL).toRad() / 2 + Geolib.PI_DIV4 ) / Math.tan( this.latitude(originLL).toRad() / 2 + Geolib.PI_DIV4 ) ); // recalculate diffLon if it is greater than pi if(Math.abs(diffLon) > Math.PI) { if(diffLon > 0) { diffLon = (Geolib.PI_X2 - diffLon) * -1; } else { diffLon = Geolib.PI_X2 + diffLon; } } //return the angle, normalized return (Math.atan2(diffLon, diffPhi).toDeg() + 360) % 360; }, /** * Gets great circle bearing of two points. See description of getRhumbLineBearing for more information * * @param object origin coordinate (e.g. {latitude: 51.5023, longitude: 7.3815}) * @param object destination coordinate * @return integer calculated bearing */ getBearing: function(originLL, destLL) { destLL['latitude'] = this.latitude(destLL); destLL['longitude'] = this.longitude(destLL); originLL['latitude'] = this.latitude(originLL); originLL['longitude'] = this.longitude(originLL); var bearing = ( ( Math.atan2( Math.sin( destLL['longitude'].toRad() - originLL['longitude'].toRad() ) * Math.cos( destLL['latitude'].toRad() ), Math.cos( originLL['latitude'].toRad() ) * Math.sin( destLL['latitude'].toRad() ) - Math.sin( originLL['latitude'].toRad() ) * Math.cos( destLL['latitude'].toRad() ) * Math.cos( destLL['longitude'].toRad() - originLL['longitude'].toRad() ) ) ).toDeg() + 360 ) % 360; return bearing; }, /** * Gets the compass direction from an origin coordinate to a destination coordinate. * * @param object origin coordinate (e.g. {latitude: 51.5023, longitude: 7.3815}) * @param object destination coordinate * @param string Bearing mode. Can be either circle or rhumbline * @return object Returns an object with a rough (NESW) and an exact direction (NNE, NE, ENE, E, ESE, etc). */ getCompassDirection: function(originLL, destLL, bearingMode) { var direction; var bearing; if(bearingMode == 'circle') { // use great circle bearing bearing = this.getBearing(originLL, destLL); } else { // default is rhumb line bearing bearing = this.getRhumbLineBearing(originLL, destLL); } switch(Math.round(bearing/22.5)) { case 1: direction = {exact: "NNE", rough: "N"}; break; case 2: direction = {exact: "NE", rough: "N"}; break; case 3: direction = {exact: "ENE", rough: "E"}; break; case 4: direction = {exact: "E", rough: "E"}; break; case 5: direction = {exact: "ESE", rough: "E"}; break; case 6: direction = {exact: "SE", rough: "E"}; break; case 7: direction = {exact: "SSE", rough: "S"}; break; case 8: direction = {exact: "S", rough: "S"}; break; case 9: direction = {exact: "SSW", rough: "S"}; break; case 10: direction = {exact: "SW", rough: "S"}; break; case 11: direction = {exact: "WSW", rough: "W"}; break; case 12: direction = {exact: "W", rough: "W"}; break; case 13: direction = {exact: "WNW", rough: "W"}; break; case 14: direction = {exact: "NW", rough: "W"}; break; case 15: direction = {exact: "NNW", rough: "N"}; break; default: direction = {exact: "N", rough: "N"}; } direction['bearing'] = bearing; return direction; }, /** * Shortcut for getCompassDirection */ getDirection: function(originLL, destLL, bearingMode) { return this.getCompassDirection.apply(this, arguments); }, /** * Sorts an array of coords by distance from a reference coordinate * * @param object reference coordinate e.g. {latitude: 51.5023, longitude: 7.3815} * @param mixed array or object with coords [{latitude: 51.5143, longitude: 7.4138}, {latitude: 123, longitude: 123}, ...] * @return array ordered array */ orderByDistance: function(latlng, coords) { var coordsArray = []; for(var coord in coords) { var distance = this.getDistance(latlng, coords[coord]); var augmentedCoord = Object.create(coords[coord]); augmentedCoord.distance = distance; augmentedCoord.key = coord; coordsArray.push(augmentedCoord); } return coordsArray.sort(function(a, b) { return a.distance - b.distance; }); }, /** * Check if a point lies in line created by two other points * * @param object Point to check: {latitude: 123, longitude: 123} * @param object Start of line {latitude: 123, longitude: 123} * @param object End of line {latitude: 123, longitude: 123} * @return boolean */ isPointInLine: function(point, start, end) { return (this.getDistance(start, point, 1, 3)+this.getDistance(point, end, 1, 3)).toFixed(3)==this.getDistance(start, end, 1, 3); }, /** * Check if a point lies within a given distance from a line created by two other points * * @param object Point to check: {latitude: 123, longitude: 123} * @param object Start of line {latitude: 123, longitude: 123} * @param object End of line {latitude: 123, longitude: 123} * @pararm float maximum distance from line * @return boolean */ isPointNearLine: function(point, start, end, distance) { return this.getDistanceFromLine(point, start, end) < distance; }, /** * return the minimum distance from a point to a line * * @param object Point away from line * @param object Start of line {latitude: 123, longitude: 123} * @param object End of line {latitude: 123, longitude: 123} * @return float distance from point to line */ getDistanceFromLine: function(point, start, end) { var d1 = this.getDistance(start, point, 1, 3); var d2 = this.getDistance(point, end, 1, 3); var d3 = this.getDistance(start, end, 1, 3); var distance = 0; // alpha is the angle between the line from start to point, and from start to end // var alpha = Math.acos((d1*d1 + d3*d3 - d2*d2)/(2*d1*d3)); // beta is the angle between the line from end to point and from end to start // var beta = Math.acos((d2*d2 + d3*d3 - d1*d1)/(2*d2*d3)); // if the angle is greater than 90 degrees, then the minimum distance is the // line from the start to the point // if(alpha>Math.PI/2) { distance = d1; } // same for the beta // else if(beta > Math.PI/2) { distance = d2; } // otherwise the minimum distance is achieved through a line perpendular to the start-end line, // which goes from the start-end line to the point // else { distance = Math.sin(alpha) * d1; } return distance; }, /** * Finds the nearest coordinate to a reference coordinate * * @param object reference coordinate e.g. {latitude: 51.5023, longitude: 7.3815} * @param mixed array or object with coords [{latitude: 51.5143, longitude: 7.4138}, {latitude: 123, longitude: 123}, ...] * @return array ordered array */ findNearest: function(latlng, coords, offset, limit) { offset = offset || 0; limit = limit || 1; var ordered = this.orderByDistance(latlng, coords); if(limit === 1) { return ordered[offset]; } else { return ordered.splice(offset, limit); } }, /** * Calculates the length of a given path * * @param mixed array or object with coords [{latitude: 51.5143, longitude: 7.4138}, {latitude: 123, longitude: 123}, ...] * @return integer length of the path (in meters) */ getPathLength: function(coords) { var dist = 0; var last; for (var i = 0, l = coords.length; i < l; ++i) { if(last) { //console.log(coords[i], last, this.getDistance(coords[i], last)); dist += this.getDistance(this.coords(coords[i]), last); } last = this.coords(coords[i]); } return dist; }, /** * Calculates the speed between to points within a given time span. * * @param object coords with javascript timestamp {latitude: 51.5143, longitude: 7.4138, time: 1360231200880} * @param object coords with javascript timestamp {latitude: 51.5502, longitude: 7.4323, time: 1360245600460} * @param object options (currently "unit" is the only option. Default: km(h)); * @return float speed in unit per hour */ getSpeed: function(start, end, options) { var unit = options && options.unit || 'km'; if(unit == 'mph') { unit = 'mi'; } else if(unit == 'kmh') { unit = 'km'; } var distance = geolib.getDistance(start, end); var time = ((end.time*1)/1000) - ((start.time*1)/1000); var mPerHr = (distance/time)*3600; var speed = Math.round(mPerHr * this.measures[unit] * 10000)/10000; return speed; }, /** * Computes the destination point given an initial point, a distance * and a bearing * * see http://www.movable-type.co.uk/scripts/latlong.html for the original code * * @param object start coordinate (e.g. {latitude: 51.5023, longitude: 7.3815}) * @param float longitude of the inital point in degree * @param float distance to go from the inital point in meter * @param float bearing in degree of the direction to go, e.g. 0 = north, 180 = south * @param float optional (in meter), defaults to mean radius of the earth * @return object {latitude: destLat (in degree), longitude: destLng (in degree)} */ computeDestinationPoint: function(start, distance, bearing, radius) { var lat = this.latitude(start); var lng = this.longitude(start); radius = (typeof radius === 'undefined') ? this.radius : Number(radius); var δ = Number(distance) / radius; // angular distance in radians var θ = Number(bearing).toRad(); var φ1 = Number(lat).toRad(); var λ1 = Number(lng).toRad(); var φ2 = Math.asin( Math.sin(φ1)*Math.cos(δ) + Math.cos(φ1)*Math.sin(δ)*Math.cos(θ) ); var λ2 = λ1 + Math.atan2(Math.sin(θ)*Math.sin(δ)*Math.cos(φ1), Math.cos(δ)-Math.sin(φ1)*Math.sin(φ2)); λ2 = (λ2+3*Math.PI) % (2*Math.PI) - Math.PI; // normalise to -180..+180° return { latitude: φ2.toDeg(), longitude: λ2.toDeg() }; }, /** * Converts a distance from meters to km, mm, cm, mi, ft, in or yd * * @param string Format to be converted in * @param float Distance in meters * @param float Decimal places for rounding (default: 4) * @return float Converted distance */ convertUnit: function(unit, distance, round) { if(distance === 0) { return 0; } else if(typeof distance === 'undefined') { if(this.distance === null) { throw new Error('No distance was given'); } else if(this.distance === 0) { return 0; } else { distance = this.distance; } } unit = unit || 'm'; round = (null == round ? 4 : round); if(typeof this.measures[unit] !== 'undefined') { return this.round(distance * this.measures[unit], round); } else { throw new Error('Unknown unit for conversion.'); } }, /** * Checks if a value is in decimal format or, if neccessary, converts to decimal * * @param mixed Value(s) to be checked/converted (array of latlng objects, latlng object, sexagesimal string, float) * @return float Input data in decimal format */ useDecimal: function(value) { if(Object.prototype.toString.call(value) === '[object Array]') { var geolib = this; value = value.map(function(val) { //if(!isNaN(parseFloat(val))) { if(geolib.isDecimal(val)) { return geolib.useDecimal(val); } else if(typeof val == 'object') { if(geolib.validate(val)) { return geolib.coords(val); } else { for(var prop in val) { val[prop] = geolib.useDecimal(val[prop]); } return val; } } else if(geolib.isSexagesimal(val)) { return geolib.sexagesimal2decimal(val); } else { return val; } }); return value; } else if(typeof value === 'object' && this.validate(value)) { return this.coords(value); } else if(typeof value === 'object') { for(var prop in value) { value[prop] = this.useDecimal(value[prop]); } return value; } if (this.isDecimal(value)) { return parseFloat(value); } else if(this.isSexagesimal(value) === true) { return parseFloat(this.sexagesimal2decimal(value)); } throw new Error('Unknown format.'); }, /** * Converts a decimal coordinate value to sexagesimal format * * @param float decimal * @return string Sexagesimal value (XX° YY' ZZ") */ decimal2sexagesimal: function(dec) { if (dec in this.sexagesimal) { return this.sexagesimal[dec]; } var tmp = dec.toString().split('.'); var deg = Math.abs(tmp[0]); var min = ('0.' + (tmp[1] || 0))*60; var sec = min.toString().split('.'); min = Math.floor(min); sec = (('0.' + (sec[1] || 0)) * 60).toFixed(2); this.sexagesimal[dec] = (deg + '° ' + min + "' " + sec + '"'); return this.sexagesimal[dec]; }, /** * Converts a sexagesimal coordinate to decimal format * * @param float Sexagesimal coordinate * @return string Decimal value (XX.XXXXXXXX) */ sexagesimal2decimal: function(sexagesimal) { if (sexagesimal in this.decimal) { return this.decimal[sexagesimal]; } var regEx = new RegExp(this.sexagesimalPattern); var data = regEx.exec(sexagesimal); var min = 0, sec = 0; if(data) { min = parseFloat(data[2]/60); sec = parseFloat(data[4]/3600) || 0; } var dec = ((parseFloat(data[1]) + min + sec)).toFixed(8); //var dec = ((parseFloat(data[1]) + min + sec)); // South and West are negative decimals dec = (data[7] == 'S' || data[7] == 'W') ? parseFloat(-dec) : parseFloat(dec); //dec = (data[7] == 'S' || data[7] == 'W') ? -dec : dec; this.decimal[sexagesimal] = dec; return dec; }, /** * Checks if a value is in decimal format * * @param string Value to be checked * @return bool True if in sexagesimal format */ isDecimal: function(value) { value = value.toString().replace(/\s*/, ''); // looks silly but works as expected // checks if value is in decimal format return (!isNaN(parseFloat(value)) && parseFloat(value) == value); }, /** * Checks if a value is in sexagesimal format * * @param string Value to be checked * @return bool True if in sexagesimal format */ isSexagesimal: function(value) { value = value.toString().replace(/\s*/, ''); return this.sexagesimalPattern.test(value); }, round: function(value, n) { var decPlace = Math.pow(10, n); return Math.round(value * decPlace)/decPlace; } }); // Node module Eif (typeof module !== 'undefined' && typeof module.exports !== 'undefined') { module.exports = geolib; // react native Eif (typeof global === 'object') { global.geolib = geolib; } // AMD module } else if (typeof define === "function" && define.amd) { define("geolib", [], function () { return geolib; }); // we're in a browser } else { global.geolib = geolib; } }(this)); |