npmtest-bitcoinjs-lib (v0.0.1)

Code coverage report for node-npmtest-bitcoinjs-lib/node_modules/bitcoinjs-lib/src/ecdsa.js

Statements: 20% (14 / 70)      Branches: 0% (0 / 21)      Functions: 0% (0 / 4)      Lines: 21.88% (14 / 64)      Ignored: none     

All files » node-npmtest-bitcoinjs-lib/node_modules/bitcoinjs-lib/src/ » ecdsa.js
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 1661 1 1   1 1   1 1   1 1     1                                                                                                                             1   1                                                             1                                                                                           1                  
var createHmac = require('create-hmac')
var typeforce = require('typeforce')
var types = require('./types')
 
var BigInteger = require('bigi')
var ECSignature = require('./ecsignature')
 
var ZERO = new Buffer([0])
var ONE = new Buffer([1])
 
var ecurve = require('ecurve')
var secp256k1 = ecurve.getCurveByName('secp256k1')
 
// https://tools.ietf.org/html/rfc6979#section-3.2
function deterministicGenerateK (hash, x, checkSig) {
  typeforce(types.tuple(
    types.Hash256bit,
    types.Buffer256bit,
    types.Function
  ), arguments)
 
  var k = new Buffer(32)
  var v = new Buffer(32)
 
  // Step A, ignored as hash already provided
  // Step B
  v.fill(1)
 
  // Step C
  k.fill(0)
 
  // Step D
  k = createHmac('sha256', k)
    .update(v)
    .update(ZERO)
    .update(x)
    .update(hash)
    .digest()
 
  // Step E
  v = createHmac('sha256', k).update(v).digest()
 
  // Step F
  k = createHmac('sha256', k)
    .update(v)
    .update(ONE)
    .update(x)
    .update(hash)
    .digest()
 
  // Step G
  v = createHmac('sha256', k).update(v).digest()
 
  // Step H1/H2a, ignored as tlen === qlen (256 bit)
  // Step H2b
  v = createHmac('sha256', k).update(v).digest()
 
  var T = BigInteger.fromBuffer(v)
 
  // Step H3, repeat until T is within the interval [1, n - 1] and is suitable for ECDSA
  while (T.signum() <= 0 || T.compareTo(secp256k1.n) >= 0 || !checkSig(T)) {
    k = createHmac('sha256', k)
      .update(v)
      .update(ZERO)
      .digest()
 
    v = createHmac('sha256', k).update(v).digest()
 
    // Step H1/H2a, again, ignored as tlen === qlen (256 bit)
    // Step H2b again
    v = createHmac('sha256', k).update(v).digest()
    T = BigInteger.fromBuffer(v)
  }
 
  return T
}
 
var N_OVER_TWO = secp256k1.n.shiftRight(1)
 
function sign (hash, d) {
  typeforce(types.tuple(types.Hash256bit, types.BigInt), arguments)
 
  var x = d.toBuffer(32)
  var e = BigInteger.fromBuffer(hash)
  var n = secp256k1.n
  var G = secp256k1.G
 
  var r, s
  deterministicGenerateK(hash, x, function (k) {
    var Q = G.multiply(k)
 
    if (secp256k1.isInfinity(Q)) return false
 
    r = Q.affineX.mod(n)
    if (r.signum() === 0) return false
 
    s = k.modInverse(n).multiply(e.add(d.multiply(r))).mod(n)
    if (s.signum() === 0) return false
 
    return true
  })
 
  // enforce low S values, see bip62: 'low s values in signatures'
  if (s.compareTo(N_OVER_TWO) > 0) {
    s = n.subtract(s)
  }
 
  return new ECSignature(r, s)
}
 
function verify (hash, signature, Q) {
  typeforce(types.tuple(
    types.Hash256bit,
    types.ECSignature,
    types.ECPoint
  ), arguments)
 
  var n = secp256k1.n
  var G = secp256k1.G
 
  var r = signature.r
  var s = signature.s
 
  // 1.4.1 Enforce r and s are both integers in the interval [1, n − 1]
  if (r.signum() <= 0 || r.compareTo(n) >= 0) return false
  if (s.signum() <= 0 || s.compareTo(n) >= 0) return false
 
  // 1.4.2 H = Hash(M), already done by the user
  // 1.4.3 e = H
  var e = BigInteger.fromBuffer(hash)
 
  // Compute s^-1
  var sInv = s.modInverse(n)
 
  // 1.4.4 Compute u1 = es^−1 mod n
  //               u2 = rs^−1 mod n
  var u1 = e.multiply(sInv).mod(n)
  var u2 = r.multiply(sInv).mod(n)
 
  // 1.4.5 Compute R = (xR, yR)
  //               R = u1G + u2Q
  var R = G.multiplyTwo(u1, Q, u2)
 
  // 1.4.5 (cont.) Enforce R is not at infinity
  if (secp256k1.isInfinity(R)) return false
 
  // 1.4.6 Convert the field element R.x to an integer
  var xR = R.affineX
 
  // 1.4.7 Set v = xR mod n
  var v = xR.mod(n)
 
  // 1.4.8 If v = r, output "valid", and if v != r, output "invalid"
  return v.equals(r)
}
 
module.exports = {
  deterministicGenerateK: deterministicGenerateK,
  sign: sign,
  verify: verify,
 
  // TODO: remove
  __curve: secp256k1
}