1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
| var createHmac = require('create-hmac')
var typeforce = require('typeforce')
var types = require('./types')
var BigInteger = require('bigi')
var ECSignature = require('./ecsignature')
var ZERO = new Buffer([0])
var ONE = new Buffer([1])
var ecurve = require('ecurve')
var secp256k1 = ecurve.getCurveByName('secp256k1')
// https://tools.ietf.org/html/rfc6979#section-3.2
function deterministicGenerateK (hash, x, checkSig) {
typeforce(types.tuple(
types.Hash256bit,
types.Buffer256bit,
types.Function
), arguments)
var k = new Buffer(32)
var v = new Buffer(32)
// Step A, ignored as hash already provided
// Step B
v.fill(1)
// Step C
k.fill(0)
// Step D
k = createHmac('sha256', k)
.update(v)
.update(ZERO)
.update(x)
.update(hash)
.digest()
// Step E
v = createHmac('sha256', k).update(v).digest()
// Step F
k = createHmac('sha256', k)
.update(v)
.update(ONE)
.update(x)
.update(hash)
.digest()
// Step G
v = createHmac('sha256', k).update(v).digest()
// Step H1/H2a, ignored as tlen === qlen (256 bit)
// Step H2b
v = createHmac('sha256', k).update(v).digest()
var T = BigInteger.fromBuffer(v)
// Step H3, repeat until T is within the interval [1, n - 1] and is suitable for ECDSA
while (T.signum() <= 0 || T.compareTo(secp256k1.n) >= 0 || !checkSig(T)) {
k = createHmac('sha256', k)
.update(v)
.update(ZERO)
.digest()
v = createHmac('sha256', k).update(v).digest()
// Step H1/H2a, again, ignored as tlen === qlen (256 bit)
// Step H2b again
v = createHmac('sha256', k).update(v).digest()
T = BigInteger.fromBuffer(v)
}
return T
}
var N_OVER_TWO = secp256k1.n.shiftRight(1)
function sign (hash, d) {
typeforce(types.tuple(types.Hash256bit, types.BigInt), arguments)
var x = d.toBuffer(32)
var e = BigInteger.fromBuffer(hash)
var n = secp256k1.n
var G = secp256k1.G
var r, s
deterministicGenerateK(hash, x, function (k) {
var Q = G.multiply(k)
if (secp256k1.isInfinity(Q)) return false
r = Q.affineX.mod(n)
if (r.signum() === 0) return false
s = k.modInverse(n).multiply(e.add(d.multiply(r))).mod(n)
if (s.signum() === 0) return false
return true
})
// enforce low S values, see bip62: 'low s values in signatures'
if (s.compareTo(N_OVER_TWO) > 0) {
s = n.subtract(s)
}
return new ECSignature(r, s)
}
function verify (hash, signature, Q) {
typeforce(types.tuple(
types.Hash256bit,
types.ECSignature,
types.ECPoint
), arguments)
var n = secp256k1.n
var G = secp256k1.G
var r = signature.r
var s = signature.s
// 1.4.1 Enforce r and s are both integers in the interval [1, n − 1]
if (r.signum() <= 0 || r.compareTo(n) >= 0) return false
if (s.signum() <= 0 || s.compareTo(n) >= 0) return false
// 1.4.2 H = Hash(M), already done by the user
// 1.4.3 e = H
var e = BigInteger.fromBuffer(hash)
// Compute s^-1
var sInv = s.modInverse(n)
// 1.4.4 Compute u1 = es^−1 mod n
// u2 = rs^−1 mod n
var u1 = e.multiply(sInv).mod(n)
var u2 = r.multiply(sInv).mod(n)
// 1.4.5 Compute R = (xR, yR)
// R = u1G + u2Q
var R = G.multiplyTwo(u1, Q, u2)
// 1.4.5 (cont.) Enforce R is not at infinity
if (secp256k1.isInfinity(R)) return false
// 1.4.6 Convert the field element R.x to an integer
var xR = R.affineX
// 1.4.7 Set v = xR mod n
var v = xR.mod(n)
// 1.4.8 If v = r, output "valid", and if v != r, output "invalid"
return v.equals(r)
}
module.exports = {
deterministicGenerateK: deterministicGenerateK,
sign: sign,
verify: verify,
// TODO: remove
__curve: secp256k1
}
|